THE CRYSTAL AND MOLECULAR STRUCTURE OF MELATONIN, N-ACETYL-5-METHOXYTRYPTAMINE

Akio WAKAHARA, Takaji FUJIWARA, and Ken-ichi TOMITA Faculty of Pharmaceutical Sciences, Osaka University Toneyama, Toyonaka, Osaka, Japan

The molecular structure and configuration of melatonin, one of tryptophan metabolites, has been determined by X-ray diffraction method and some structural features are compared with those of related compounds. The structure was solved by the symbolic addition procedure and was refined by block-diagonal least-squares method.

Melatonin was first isolated from bovine pineal glands as a factor that lightens skin colour by reversing the darkening effect of the melanocyte stimulating hormone¹⁾ and also found in tryptophan metabolic pathway as a precursor of 6-hydroxymelatonin.²⁾ As a part of the structural studies of tryptophan metabolites, we have previously reported the crystal and molecular structures of 5-hydroxytryptophan³⁾ and tryptamine.⁴⁾ With this communication, we describe the molecular structure of melatonin and compare the molecular structure with those of other metabolites of tryptophan.

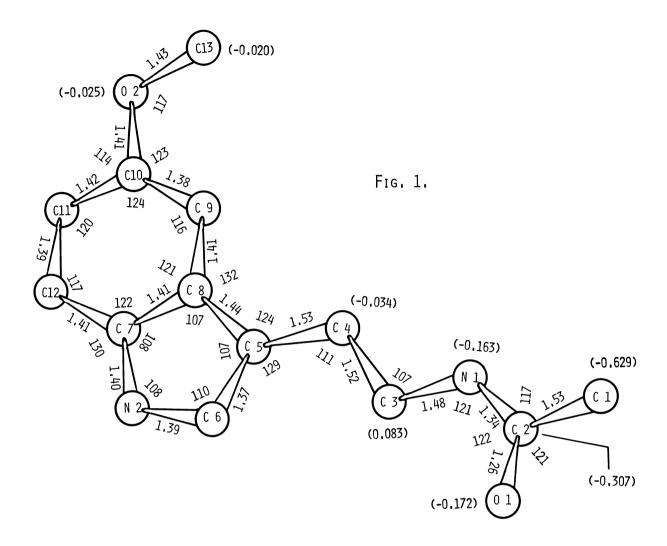
Melatonin (N-acetyl-5-methoxytryptamine), $C_{13}H_{16}N_2O_2$, was recrystallized from benzene solution as yellow plates (m.p. 118-119°), which were shown to be monoclinic with unit cell parameters of a = 7.711, b = 9.282, c = 17.107 Å and β = 96.77°. From systematic extinctions, the space group was determined to be $P2_1/c$. The density value of 1.269 g/cc, measured by the flotation method in calcium chloride aqueous solution, indicated that there are four molecules in a unit cell. Lattice constants and intensities were measured on a Rigaku-Denki automatic four-circle diffractometer with Ni-filtered Cu-K α radiation.

A total of 1219 independent non-zero intensities were collected within the range less than 0.53 of $\sin\theta/\lambda$ using the ω -20 scanning technique. A Wilson plot was then made to estimate an approximate scale factor and overall temperature factor (B = 3.43 Ų). The crystal structure was solved by the symbolic addition method for centrosymmetric crystals proposed by Karle & Karle. The phases of 167 reflections with |E| > 1.2 were determined, and three-dimensional E maps were computed for possible eight cases. Of these E maps, one revealed the plausible high peaks corresponding to the atomic sites of melatonin molecule. The coordinates of the seventeen atoms as selected from the E map were refined by

The coordinates of the seventeen atoms as selected from the E map were refined by successive Fourier syntheses and the block diagonal least-squares procedure. Five cycles of isotropic least-squares refinement reduced the agreement index (R-factor) to 12.9%.

Next five cycles of refinement with anisotropic temperature factors caused a further reduction of R to 9.6%. A difference synthesis at this stage revealed the location of all the hydrogen atoms, and the contributions of these light atoms reduced the R index to 6.3%. Further refinement of the structure is now in progress. The atomic parameters and temperature factors (B_{ij}) for heavy atoms thus obtained are listed in Table 1. The average standard deviations of the coordinates are about 0.007, 0.006 and 0.005 Å for carbon, nitrogen and oxygen atoms, respectively.

_					-	
	٨	-		_	- 1	
	Д	В	1	_	- 1.	٠

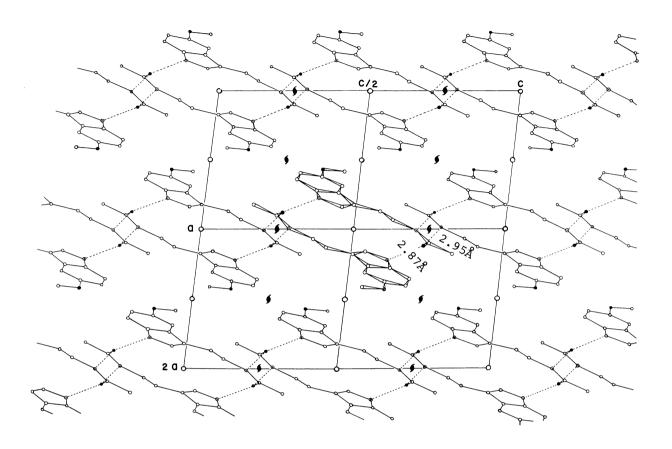

				B _{ij} (x10 ⁴)						
Atom	x	У	z	B ₁₁	B ₂₂	Взз	B ₁₂	В ₁₃	В ₂₃	
C(1)	1.1750	0.2986	0.8350	247	128	29	-21	-15	13	
C(2)	1.0969	0.3563	0.7550	205	86	32	3	52	-8	
C(3)	0.9357	0.3088	0.6258	271	101	20	-19	-19	-3	
C(4)	0.8703	0.1735	0.5814	215	81	25	-19	-1	-1	
C(5)	0.8194	0.2067	0.4943	166	84	28	17	28	1	
C(6)	0.8395	0.3324	0.4541	195	95	31	20	17	14	
C(7)	0.7145	0.1739	0.3648	172	96	28	33	15	2	
C(8)	0.7398	0.1041	0.4383	154	85	25	- 5	24	0	
C(9)	0.6887	-0.0411	0.4458	165	89	34	-1	22	-10	
C(10)	0.6186	-0.1087	0.3775	182	101	40	-1	11	-12	
C(11)	0.5943	-0.0400	0.3032	186	131	36	16	9	-18	
C(12)	0.6419	0.1030	0.2956	183	138	33	34	12	-1	
C(13)	0.5866	-0.3313	0.4485	296	88	55	-26	22	24	
N(1)	1.0081	0.2636	0.7059	212	79	25	-12	11	-7	
N(2)	0.7730	0.3155	0.3754	215	95	36	8	20	11	
0(1)	1.1145	0.4863	0.7368	297	75	33	- 55	29	-6	
0(2)	0.5659	-0.2539	0.3756	282	108	52	- 95	7	-38	

Anisotropic temperature factors are in the form: $T = \exp[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl)].$

Fig. 1 shows a schematic view of the structure as seen along the a-axis with the bond distances and valency angles. The deviations of individual atoms from indole ring plane are also shown in parentheses.

The mean C-C distance in the benzene ring is 1.402~Å, while those of C-C and C-N distances in the pyrrole ring are 1.405~Å and 1.394~Å, respectively.

The indole part of melatonin molecule is planar, the average deviation of the atoms from this plane is 0.011 Å, and the maximum deviation is 0.022 Å for N(2). C(1), C(2) and O(1) of acetyl group and N(1) are almost strictly in a plane. This plane forms a dihedral angle of 12° with that of the indole ring.



The torsion angle as defined by Klyne & $Prelog^6$ is $+0.4^\circ$ (syn-periplanar) for the atoms C(13)-O(2)-C(10)-C(9), while the equivalent angle in 5-methoxy-(N,N)-dimethyltryptamine hydrochloride is $+2.5^\circ.7^\circ$

Three important torsion angles C(2)-N(1)-C(3)-C(4), N(1)-C(3)-C(4)-C(5) and C(3)-C(4)-C(5)-C(6) are +171° (anti-periplanar), -171° (anti-periplanar) and +6° (syn-periplanar), respectively. The extended configuration of the side chain attached to C(5) atom is also found in serotonin-creatinine sulphate complex. 8)

The crystal structure viewed along the b-axis is illustrated in Fig. 2. Two melatonin molecules are hydrogen-bonded through N(2)-H---O(1) (2.87 ${\rm \AA}$) into dimer related by center of symmetry. These dimers are linked together by N(1)-H---O(1) hydrogen bonds (2.95 ${\rm \AA}$) in the directions of b and c-axes. The normal van der Waals contacts are found between adjacent indole rings or methoxy groups to stabilize the crystal structure.

Fig. 2.

REFERENCES

- A.B. Lerner, J.D. Case, Y. Takahashi, T.H. Lee, and W. Mori, <u>J. Am. Chem. Soc.</u>, <u>80</u>, 2587 (1958).
- 2) I.J. Kopin, C.M.B. Pare, J. Axelrod, and H. Weissbach, <u>Biochim. Biophys. Acta</u>, 40, 377 (1960).
- 3) A. Wakahara, M. Kido, T. Fujiwara, and K. Tomita, <u>Tetrahedron Lett.</u>, <u>34</u>, 3003 (1970).
- 4) A. Wakahara, T. Fujiwara, and K. Tomita, Tetrahedron Lett., 57, 4999 (1970).
- 5) I.L. Karle and J. Karle, <u>Acta Cryst.</u>, <u>16</u>, 969 (1963).
- 6) W. Klyne and V. Prelog, <u>Experientia</u>, <u>16</u>, 521 (1960).
- 7) G. Falkenberg and D. Carlström, Acta Cryst., B27, 411 (1971).
- 8) I.L. Karle, K.S. Dragonette, and S.A. Brenner, Acta Cryst., 19, 713 (1965).

(Received September 21, 1972)